Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice.

نویسندگان

  • Qing Tong
  • Shan He
  • Fang Xie
  • Kazuhiro Mochizuki
  • Yongnian Liu
  • Izumi Mochizuki
  • Lijun Meng
  • Hongxing Sun
  • Yanyun Zhang
  • Yajun Guo
  • Elizabeth Hexner
  • Yi Zhang
چکیده

Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing Th1 CD4(+) T cells mediate the immune destruction of hematopoietic cells, and they are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4(+) T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4, which encode transcription factors T-bet and STAT4, respectively. Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results demonstrate that Ezh2 promotes the generation of BM-destructive Th1 cells through a mechanism of transcriptional and posttranscriptional regulation of T-bet. These results also highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOTCH signaling in immune-mediated bone marrow failure of aplastic anemia

Severe aplastic anemia is a rare bone marrow failure disease with the majority of cases caused by aberrant immune destruction of blood progenitors. Although the Th1-mediated pathology of aplastic anemia is well-described, the molecular mechanisms that drive disease progression remain ill-defined. The NOTCH signaling pathway mediates Th1 differentiation in the presence of polarizing cytokines, a...

متن کامل

Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia

Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring en...

متن کامل

T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia.

In aplastic anemia, immune destruction of hematopoietic cells results in bone marrow failure. Type 1 cytokines, especially IFN-gamma, have been implicated in the pathophysiology of T-cell-mediated, Fas-mediated stem cell apoptosis of hematopoietic cells. Here, we show that the transcription factor T-bet (T-box expressed in T cells) is increased in T cells from patients with aplastic anemia. Pat...

متن کامل

Twist1 regulates Ifng expression in Th1 cells by interfering with Runx3 function.

A transcription factor network that includes STAT4, T-bet, and Runx3 promotes the differentiation of Th1 cells and inflammatory immune responses. How additional transcription factors regulate the function of Th1 cells has not been defined. In this study we show that the negative regulatory factor Twist1 decreases expression of T-bet, Runx3, and IL-12Rβ2 as it inhibits IFN-γ production. Ectopic ...

متن کامل

STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis.

The production of IFN-gamma by T cells and the ability of this cytokine to activate the transcription factor STAT1 are implicated in the activation of antimicrobial mechanisms required for resistance to intracellular pathogens. In addition, recent studies have suggested that the ability of STAT1 to inhibit the activation of STAT4 prevents the development of Th1 responses. However, other studies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 192 11  شماره 

صفحات  -

تاریخ انتشار 2014